Optimum Design of Structures by an Improved Particle Swarm Algorithm
نویسنده
چکیده
In the present study, an efficient optimization algorithm is proposed to optimal design of structures. The proposed algorithm is an improved particle swarm optimization (PSO) which its global search performance is enhanced by employing the concept of cellular automata (CA). In the so-called improved particle swarm optimization (IPSO) algorithm a new cellular automata based term is added to the conventional velocity equation. Also, the realvalues of design variables are used and the artificial evolution is evolved on a small dimensioned grid. To show the computational advantages of the IPSO two numerical examples are presented. Using the new IPSO, not only the algorithm converges to a better solution but also the number of structural analyses is significantly reduced compared with the other existing variants of PSO algorithm.
منابع مشابه
HYBRID PARTICLE SWARM OPTIMIZATION, GRID SEARCH METHOD AND UNIVARIATE METHOD TO OPTIMALLY DESIGN STEEL FRAME STRUCTURES
This paper combines particle swarm optimization, grid search method and univariate method as a general optimization approach for any type of problems emphasizing on optimum design of steel frame structures. The new algorithm is denoted as the GSU-PSO. This method attempts to decrease the search space and only searches the space near the optimum point. To achieve this aim, the whole search space...
متن کاملA COMBINATION OF PARTICLE SWARM OPTIMIZATION AND MULTI-CRITERION DECISION-MAKING FOR OPTIMUM DESIGN OF REINFORCED CONCRETE FRAMES
Structural design optimization usually deals with multiple conflicting objectives to obtain the minimum construction cost, minimum weight, and maximum safety of the final design. Therefore, finding the optimum design is hard and time-consuming for such problems. In this paper, we borrow the basic concept of multi-criterion decision-making and combine it with Particle Swarm Optimi...
متن کاملA Hybrid Particle Swarm Optimization and Genetic Algorithm for Truss Structures with Discrete Variables
A new hybrid algorithm of Particle Swarm Optimization and Genetic Algorithm (PSOGA) is presented to get the optimum design of truss structures with discrete design variables. The objective function chosen in this paper is the total weight of the truss structure, which depends on upper and lower bounds in the form of stress and displacement limits. The Particle Swarm Optimization basically model...
متن کاملAn Improved DPSO Algorithm for Cell Formation Problem
Cellular manufacturing system, an application of group technology, has been considered as an effective method to obtain productivity in a factory. For design of manufacturing cells, several mathematical models and various algorithms have been proposed in literature. In the present research, we propose an improved version of discrete particle swarm optimization (PSO) to solve manufacturing cell ...
متن کاملA HYBRID ALGORITHM FOR SIZING AND LAYOUT OPTIMIZATION OF TRUSS STRUCTURES COMBINING DISCRETE PSO AND CONVEX APPROXIMATION
An efficient method for size and layout optimization of the truss structures is presented in this paper. In order to this, an efficient method by combining an improved discrete particle swarm optimization (IDPSO) and method of moving asymptotes (MMA) is proposed. In the hybrid of IDPSO and MMA, the nodal coordinates defining the layout of the structure are optimized with MMA, and afterwards the...
متن کاملIMPROVING COMPUTATIONAL EFFICIENCY OF PARTICLE SWARM OPTIMIZATION FOR OPTIMAL STRUCTURAL DESIGN
This paper attempts to improve the computational efficiency of the well known particle swarm optimization (PSO) algorithm for tackling discrete sizing optimization problems of steel frame structures. It is generally known that, in structural design optimization applications, PSO entails enormously time-consuming structural analyses to locate an optimum solution. Hence, in the present study it i...
متن کامل